Dealiasing of quadratic non-linearity

Aliasing

To understand the aliasing phenomena due to quadratic non-linearities, we will
consider the following simple example where there exist only four wave numbers.
Consider the two functions:

u = sin(x) + 2sin(2z) + 3sin(3z) + 4sin(4x) (1)

v = cos(z) + 2 cos(2x) + 3cos(3x) + 4 cos(4x) (2)

The Fourier amplitudes corresponding to these four modes for both the func-
tions are given by (1,2,3,4). Only that the first one contains all Sines and the
second one contains all Cosines.

It is easy to see that the product of these two contain higher harmonics i.e.,
(5,6,7,8):

uv = %(sin@x) + 4sin(3z) + 10sin(4z) + 20sin(5z)+ (3)
25sin(6z) + 24 sin(7x) + 16 sin(8z))

We will have a problem if we consider discretized version of our function.
Let us say on x € (0,27), We have

The above simple example made it clear that there will be incorrect am-
plitudes for low wave number modes if we are not going to rectify the issue of
aliasing arising due to quadratic non-linearities.

Aliasing instability: Generalization

We consider the inviscid Burgers equation as an example of nonlinear PDE with
the quadratic non-linearity. 5 5
u U
N +u e 0 (4)
We may consider the arbitrary initial condition, say u(xz,t = 0) = sinz for
x € (0,2m), and want to find out the solution for all other times.
Note that the second term on the right side is a quadratic non-linearity
in u. We want to use the pseudo-spectral method to solve this problem. We



need to use de-aliased version of the pseudo-spectral method as this involves the
quadratic non-linearity.

In what follows, we will understand why we need the dealiasing of this
quadratic non-linearity.

Note that, as part of the pseudo-spectral method, we represent the solution
as a sum of large number of Fourier modes and let them evolve with time. We
make use of discrete Fourier Transform (DFT) and the inverse discrete Fourier
Transform.

Discrete set of points (N of them with spacing of h) in the real space :
x € {h,2h,...,2m — h,27}.

In Fourier space : k € {—N/2+4+1,—-N/2+2,...,N/2}

The formula for the DFT is:

N
i(k;) =h Y u(wn)e * ™ kj=-N/2+1,..,N/2, (5)
n=1
and the inverse DFT is given by
1 N/2
w(zy,) = by Z a(kj)e™*™  n=1,..,N, (6)

i
kj=—N/2+1

Consider a term of the form u(z)v(x) in a non-linear PDE. For the case of

) . . Ou
Burgers equation, v(z) is 3.

For such a term, we have:

N/2 N/2
w(zpv(z,)] = Y (ke Y bk et (7)
kj=—N/2+1 ke=—N/2+1

Note that there are a total of N Fourier modes. This finite sum now leads
to the aliasing instability in the method. We can understand the origin of this
aliasing instability from the following graphic:

~N/2 j+s—N o 5 N/2 j+s

The truncation of the Fourier modes beyond the N/2 implies that we now
only consider the evolution of Fourier modes between —N/2 and N/2. However
due to interaction of two modes, via the quadratic nonlinearity (see equation 7),
implies that the resulting mode possibly can turn out to be outside (—N/2, N/2)
as shown in the above graphic (shown as j + s mode due to interaction of j and
s modes). However, this gets aliased to j+s— N mode due to periodic nature of
exponential function (shown in the graphic), thus leading to aliasing instability.
Thus, we need to make that the modes lying beyond (—N/2, N/2) do not get
aliased to a ’lower’ mode in the interval (—N/2, N/2). This requires us to use
the "2/3 rule’ which is the method to de-alias the quadratic nonlinearities, and is



derived next. In this method, we filter the modes beyond a certain wavenumber
to make sure the "high’ wavenumber modes are not aliased to ’low’ wave number
modes.

% rule for dealiasing:

This rule sets the amplitudes of the modes beyond a wavenumber to zero. Let
us say this wavenumber is K. Let modes j and s be in the interval (0, K).

If j+s > N/2 (outside range), then the amplitude corresponding to j+s will
be aliased to j + s — N as mentioned earlier. We demand that j+s— N < —K
in the not used part of the spectrum. The largest 7 and s in the range are
j=s=K.

Thus,

j+s—N=2K—-N
2K — N < -K
3K <N
K < N/3

This sets the threshold K = N/3 = 2/3(N/2) = (2/3) * kmay leading to the
Famous Orszag’s %rd rule for the pseudo-spectral method.

This rule can be used for solving any nonlinear partial differential equation
that only involves quadratic non-linearities such as Navier-Stokes equations.
Rules may be derived in similar manner for any other algebraic non-linearities
such as cubic and quartic non-linearities.



